
Software Engineering

Lecture 1
Instructor : Alisha Farman (Alisha.farman@iqra.edu.pk)

Your Responsibility
• Attend classes regularly

• Ask question if you have any queries regarding
course material or anything.

• Submit assignment in time.

• Don’t miss quizzes, assignments and
examinationsCan get good result.

• No Plagiarism is allowed in any sort of a writer
material – Write in your own words.

Course Policy
Assignments:

• Assignments are due at the beginning of class. •
Late assignment will not be accepted.

• All works have to be done independently except in
case of group assignments.

• Students handing in similar assignments will receive
a grade of 0 (Zero).

Attendance:

• Students are expected to attend all classes.

GRading Criteria

RECOMMENDED BOOKS:
1. Software Engineering, Sommerville I., 10th Edition,

Inc., Pearson 2014
2. Software Engineering, A Practitioner’s Approach,

Pressman R. S.& Maxim B. R., 8th Edition,
McGraw-Hill, 2015

What is Software?
Software is a set of instructions that tells a
computer what to do. It's like the brain of the
computer that makes everything work.

Software are all the programs used in a computer to
perform certain tasks.

Software refers to a collection of instructions,
data, or programs that enable a computer to perform
specific tasks. It is the non-physical component of
a computer system, as opposed to hardware, which
comprises the physical parts.

Types of Software
There are three major types of software:

● System Software: Includes operating systems, device
drivers, and utilities that manage hardware and provide
a platform for running application software.

● Application Software: Programs that perform specific
tasks for the user, such as word processors,
spreadsheets, and media players.

● Embedded Software: Software built into devices like
phones, cars, and appliances to control their
functions.

Examples of Software
● Operating Systems: These are system software that

manage the computer’s hardware and software resources.
Examples: Windows, macOS, Linux, Android, iOS.

● Web Browsers: These are application software that allow
users to browse the internet.
Examples: Google Chrome, Mozilla Firefox, Safari

● Word Processors: These are applications for creating,
editing, and formatting text documents.
Examples: Microsoft Word, Google Docs

● Media Players: Software used to play audio and video
files.
Examples: VLC Media Player, Windows Media Player,
iTunes.

Examples of Software
● Photo Editors: Software used to edit and enhance

images.
Examples: Adobe Photoshop, GIMP, Canva, Capcut

● Messaging Apps: Applications for sending messages
or making calls.
Examples: WhatsApp, Facebook Messenger, Slack.

● Games: Entertainment software that allows users to
play digital games.
Examples: Crazy taxi, Pubg, Call of Duty.

● Development Tools: Software used by programmers to
write and test code.
Examples: Visual Studio, Eclipse, Xcode, android
studio.

What are the attributes of good software?
The attributes of good software describe what makes software reliable, effective,
and user-friendly.

1. Maintainability

● The software should be easy to update and modify when necessary, whether it’s
for fixing bugs, adding new features, or adapting to new environments.

2. Reliability

● Good software performs consistently under normal conditions without crashing
or producing incorrect results. It should work correctly and as expected.

3. Efficiency

● The software should use system resources (like memory and processing power)
wisely, ensuring that it runs quickly and doesn't slow down the device.

4. Usability

● The software should be easy for users to understand and operate. A
well-designed user interface (UI) and good user experience (UX) make it more
accessible and enjoyable to use.

What are the attributes of good software?
5. Portability
● Good software can run on different platforms or

environments (like Windows, macOS, or Linux) without
needing major changes.

6. Security
● The software should protect user data and resources from

unauthorized access, hackers, and other security threats.
It should ensure privacy and data integrity.

7. Functionality
● The software must meet the needs of its users by

providing the correct features and capabilities. It
should perform the tasks it was designed for without
errors or missing functionality.

What are the attributes of good software?
8. Scalability
● The software should be able to handle an

increasing number of users, data, or tasks
without a drop in performance. This is important
for software that is expected to grow over time.

9. Testability
● It should be easy to test the software to find

and fix any bugs or problems. Testing should be
simple and thorough to ensure high quality.

What are the attributes of good software?
Good software has these features:

● Easy to Update: Changes can be made without much
trouble (maintainable).

● Reliable: It works without crashing or failing.

● Fast and Efficient: Uses resources wisely so it doesn’t
slow down your computer.

● Easy to Use: It’s user-friendly and simple to
understand.

● Secure: Keeps your data safe from hackers.

What is Software Engineering?
Software engineering is an engineering discipline that is
concerned with all aspects of software production.

Software engineering is the process of designing,
developing, testing, and maintaining software in a
systematic, efficient, and reliable way.

It involves applying engineering principles to ensure that
the software is high-quality, meets user needs, and can be
easily maintained and updated.

Software engineering is important for two reasons:
1. More and more, individuals and society rely on
advanced software systems. We need to be able to produce
reliable and trustworthy systems economically and
quickly.

2. It is usually cheaper, in the long run, to use
software engineering methods and techniques for software
systems rather than just write the programs as if it was
a personal programming project. For most types of
systems, the majority of costs are the costs of changing
the software after it has gone into use.

Difference between Computer science, system and software
engineering
Computer Science (CS): Focuses on the theoretical foundations of information and
computation. It includes studying algorithms, data structures, artificial
intelligence, and more. Computer science covers a broad range of topics, from
computing theory to hardware systems, but it is less concerned with the
practicalities of building software products for specific users.

System Engineering (SE): Focuses on the overall design, integration, and management
of complex systems over their life cycles. System engineering involves hardware,
software, people, processes, and infrastructure to deliver functioning systems. It
is a multidisciplinary field that spans engineering, project management, and
software engineering.

Software Engineering: A subfield of system engineering that focuses solely on
software products. It deals with the entire software development life cycle,
including requirements analysis, design, implementation, testing, deployment, and
maintenance.

What are the fundamental software engineering activities?
The fundamental software engineering activities
include

1. Software specification (Software ki zaruratein
likhna aur samajhna)

2. Software development (Actual software banana —
coding wala part)

3. Software validation (Check karna ke software
sahi kaam kar raha hai ya nahi)

4. Software evolution(Software ka waqt ke saath
update hona)

What are the Key Components of Software Engineering?
Software engineering includes multiple components which help in the
overall software development process. Let’s understand each of the
components in detail.

● Requirements analysis: You identify and understand the requirements
of the end-users, technical, and functional constraints.

● Software design: Creating a detailed plan that defines the
software’s architecture, components, interfaces, and data
structures.

● Implementation: Writing the code and converting the design into a
working software application.

● Software testing: Ensuring that the software functions as intended,
and identifying and fixing any bugs or issues.

● Deployment: Distributing the software to end-users and making sure
it works properly in the intended environment.

● Maintenance: Updating, improving, and fixing the software over time
to meet changing requirements or address issues.

How Does Software Engineering Differ from Programming?
Software engineering and programming, both involve
writing code. Computer programming focuses on the act
of writing code to create software, whereas software
engineering involves the entire software development
lifecycle, from requirements analysis to maintenance.

In other words, software engineering is a more
comprehensive approach to building software solutions.
On the contrary, computer programming refers to only
writing code for a software solution.

5 Core Challenges Faced in Software Engineering
1. Complex and Evolving Requirements

As a software engineer, you’ll face complex and ever-changing
requirements. It’s crucial to effectively gather, analyze, and
prioritize features while accommodating changes during development.
Failing to address these complexities can lead to delays, increased
costs, and unmet user requirements.

2. Scalability and Performance
You need to build software solutions that scale effectively and
maintain high performance as the user base or data volume grows.
Consider factors such as load balancing, data partitioning, and caching
strategies. Ignoring scalability and performance issues can result in
slow, unresponsive software that frustrates users and hinders growth.

3. Integration With Existing Systems and Technologies
Your software often needs to interact with other systems, APIs, and
technologies.The inability to integrate effectively with other systems
may limit your software’s usefulness and impact.

https://www.spaceo.ca/blog/how-to-develop-software/

5 Core Challenges Faced in Software Engineering
3. Security and Privacy
As a software engineer, it’s essential to ensure your software is
secure and protects user data. Employ safe coding practices,
encryption, and authentication mechanisms, and stay updated on
relevant regulations. Failure to address security and privacy
challenges can lead to data breaches, loss of user trust, and
legal consequences.

4. Effective Team Collaboration
Software projects involve diverse development teams, so
facilitating effective communication and collaboration is
crucial. Adopt agile methodologies, use collaboration tools, and
foster a culture of open communication and shared ownership.
Overcoming team collaboration challenges helps increase the
likelihood of delivering successful, high-quality software
products on time and within budget.

Who wants to be a Software Engineer?
Software engineers are concerned with developing software
products (i.e., software which can be sold to a customer).

Software Products
There are two kinds of software products:

1. Generic products These are stand-alone
systems that are produced by a development
organization and sold on the open market to any
customer who is able to buy them. Generic
products are versatile and widely applicable
software solutions available for purchase by
any customer.

Examples:

● Microsoft Office Suite: Includes applications like Word,
Excel, and PowerPoint that can be used by anyone for
various tasks.

● Adobe Photoshop: A widely used software for photo editing
and graphic design, available to a broad audience.

● Web Browsers: Google Chrome, Mozilla Firefox, and
Safari, which are available for anyone to use for
browsing the internet.

● Video Conferencing Tools: Zoom, Microsoft Teams, and
Skype, which offer video communication services for
individuals and organizations.

● Project Management Tools: Software like Trello, Asana, or
Microsoft Project that can be used by any team for task
and project management.

Software Products
2. Customized (or bespoke) products These are
systems that are commissioned by a particular
customer. A software contractor develops the
software especially for that customer.
customized products are specifically designed
and developed for the unique needs of
individual clients or organizations. Each type
serves different purposes and caters to
different market segments.

Examples:

● Mobile Applications: A restaurant might hire developers to create a
mobile app for ordering food and making reservations tailored to
their specific menu and service

● Healthcare Information Systems: Custom systems developed for specific
hospitals or clinics to manage patient data, appointments, billing,
and compliance with health regulations.

● Air Traffic Control Systems: These systems are developed to meet the
specific regulatory and operational requirements of a particular
country's aviation authority.

● Healthcare Management Systems: Custom software created for a hospital
or clinic to manage patient records, appointments, billing, and other
functions tailored to their specific needs.

● School Management System for an Educational Institution: A private
school commissions a software system to manage student enrollment,
attendance, grade books, parent-teacher communication, and
extracurricular activities specific to the institution's policies.

What is CASE?
Computer-aided software engineering (CASE) is the
implementation of computer-facilitated tools and methods in
software development. CASE is used to ensure high-quality
and defect-free software. CASE ensures a check-pointed and
disciplined approach and helps designers, developers,
testers, managers, and others to see the project milestones
during development.

Computer-Aided Software Engineering (CASE) refers to the
use of software tools to assist in the software
development process. These tools help automate various
stages of software development, including planning,
designing, coding, testing, and maintenance.

CASE tools woh software hote hain jo
software banana aasan banate hain. Jaise
Microsoft Word document likhne mein
madad karta hai, waise hi CASE tools
software banane mein madad karte hain.

Key Components of CASE
Tools and Software:
CASE encompasses a wide range of tools, including:

● Modeling Tools: Used for creating diagrams and models (e.g., UML
diagrams, flowcharts) to represent system architecture and design.

● Code Generators: Automatically generate code from models or
specifications, reducing manual coding effort.(Aapne UML class
diagram banayi — us diagram ko ek tool (jaise StarUML) mein daala —
tool ne Java ya C++ ka code automatically generate kar diya.)

● Testing Tools: Assist in automating testing processes, including unit
testing, integration testing, and system testing.

● Documentation Tools: Help generate and manage project documentation,
such as requirements specifications, design documents, and user
manuals.

● Project Management Tools: Aid in planning, scheduling, and tracking
project progress, resources, and risks.

Methodologies:
CASE often incorporates various methodologies and
frameworks to guide the software development process,
such as:

● Agile: Focusing on iterative development and
collaboration.

● Waterfall: Following a linear, sequential approach.

CASE TOOLS

CASE tools are classified into two main categories:

Upper CASE tools: Focus on the early stages of
software development, such as requirements analysis,
system design, and architectural modeling.

Lower CASE tools: Focus on later stages, such as
code generation, testing, debugging, and
maintenance.

Benefits of Using CASE Tools
Improved Productivity: Automation of tasks like design, coding, and testing speeds
up the development process.

Consistency: Helps ensure that all parts of the software follow the same design
principles and coding standards.

Error Reduction: Early detection of errors and inconsistencies, reducing bugs and
rework during later stages.

Better Documentation: Automatically generates documentation for models, designs,
and code.

Efficient Collaboration: Facilitates collaboration between teams by centralizing
design and development efforts.

Quality Improvement: Enhances software quality by providing tools for testing and
validation.

Software engineering ethics

Software engineering ethics

Examples of Ethical Issues in Software Engineering:
Data Breaches: Failing to implement adequate security measures,
leading to unauthorized access to sensitive user data.

Algorithmic Bias: Developing algorithms that perpetuate
discrimination or bias against certain groups based on race, gender,
or socioeconomic status.

Intellectual Property Theft: Using proprietary code or technology
without permission, violating copyright laws and ethical standards.

Misleading Software Claims: Making exaggerated or false claims about
the capabilities or performance of software products.

Software engineering ethics
Here are some key aspects of software engineering ethics:

Professional Conduct

● Integrity: Software engineers should act with honesty and integrity in
their professional work. This includes accurately representing their
qualifications, capabilities, and the potential of the software they
develop.

● Competence: Engineers should only undertake work that they are competent
to perform and should seek to improve their skills and knowledge
continuously.

Respect for Privacy

● Data Protection: Software engineers must respect user privacy and ensure
that personal data is collected, stored, and processed securely. They
should comply with relevant data protection regulations.

● User Consent: Users should be informed about how their data will be used
and should give explicit consent before data collection.

Software engineering ethics
Transparency and Accountability

● Disclosure: Software engineers should disclose any potential conflicts of
interest, as well as limitations or risks associated with the software they
develop.

● Accountability: Engineers should take responsibility for their work and the
consequences of software failures or misuse.

Quality Assurance

● Commitment to Quality: Software engineers should strive to produce
high-quality software that is reliable, secure, and free from defects. This
includes proper testing and validation.

● Ethical Testing: Engineers should avoid using deceptive practices in software
testing and ensure that the software behaves as expected.

Impact on Society

● Social Responsibility: Software engineers should consider the societal impact
of their work, including potential harm or benefits to individuals,
communities, and the environment.

Software engineering ethics
Compliance with Laws and Regulations

● Legal Standards: Software engineers must adhere to relevant laws and
regulations governing software development, intellectual property, and
cybersecurity.

● Ethical Use of Software: Engineers should avoid creating or supporting software
that promotes illegal or unethical activities, such as hacking, piracy, or
discrimination.

Professional Development and Mentorship

● Continuous Learning: Engineers should commit to lifelong learning and
professional development, staying updated on best practices, technologies, and
ethical considerations in software engineering.

● Mentorship: Experienced engineers should mentor and guide junior professionals,
promoting ethical behavior and professional growth in the field.

Collaboration and Respect

● Teamwork: Engineers should work collaboratively with colleagues, respecting
diverse perspectives and contributions. They should communicate effectively and
foster a positive team environment.

● Conflict Resolution: When conflicts arise, engineers should approach them
professionally and ethically, seeking resolution through dialogue and
compromise.

Discussion
The “Drone Revolution” is currently being debated
and discussed all over the world. Drones are
unmanned flying machines that are built and
equipped with various kinds of software systems
that allow them to see, hear, and act. Discuss
some of the societal challenges of building such
kinds of systems.

Common Myths of Software Engineering
Myth: Software Development is Just Coding

● Reality: Software engineering encompasses much more than just writing
code. It includes requirements gathering, design, testing, and
maintenance.

Myth: Adding More Developers Speeds Up Development

● Reality: Adding more developers to a late project can slow it down due to
increased coordination and communication overhead (Brooks' Law).

Myth: Requirements Are Always Clear and Fixed

● Reality: Requirements often evolve over time as stakeholders gain a better
understanding of their needs. Agile methodologies address this by allowing
for flexibility.

Myth: Testing is an Afterthought

● Reality: Testing should be integrated throughout the development process
(test-driven development), not just at the end, to catch defects early.

Common Myths of Software Engineering
Myth: Good Software Can Be Built Quickly

● Reality: Quality software requires time for planning, design, development,
testing, and refinement. Shortcuts can lead to technical debt and poor
quality.

Myth: More Features Mean Better Software

● Reality: Adding unnecessary features can complicate software and detract
from its core functionality. Focus on delivering essential features first.

Myth: Documentation is Unnecessary

● Reality: Proper documentation is crucial for maintaining software,
onboarding new team members, and ensuring that knowledge is preserved over
time.

Myth: Software Development is a Linear Process

● Reality: Software development is often iterative and can involve
revisiting earlier phases (requirements, design, testing) based on
feedback and changes.

Common practices in software engineering
1. Requirement Analysis
2. Software Design
3. Methodologies
4. Testing and Quality Assurance
5. Version Control
6. Documentation
7. Code Reviews

Discussion
Discuss whether professional engineers should be certified
in the same way as doctors or lawyers.

No, software engineers do not necessarily need to be
certified in the same way as doctors or lawyers. However,
certification may be beneficial in specific, safety-critical
fields.

