SOFTWARE ENGINEERING

e Attend classes regularly

e Ask question if you have any queries regarding
course material or anything.

e Submit assignment 1in time.

e Don’t miss quizzes, assignments and
examinationsCan get good result.

e No Plagiarism is allowed in any sort of a writer
material - Write in your own words.

Assignments:

e Assignments are due at the beginning of class. e
Late assignment will not be accepted.

e A1l works have to be done independently except 1in
case of group assignments.

e Students handing in similar assignments will receive
a grade of 0 (Zero).

Attendance:

e Students are expected to attend all classes.

Grading Breakup and Policy

Marks

Assignments

Quizzes

Mid Semester Examination
End Semester Examination

Project

10
10
235
40
15

1. Software Engineering, Sommerville I., 10th Edition,
Inc., Pearson 2014

2. Software Engineering, A Practitioner’s Approach,
Pressman R. S.& Maxim B. R., 8th Edition,
McGraw-Hill, 2015

What is Software?

WHAT 15 SOFTWARE?

Software 1is a set of 1dnstructions that tells a
computer what to do. It's 1like the brain of the
computer that makes everything work.

Software are all the programs used in a computer to
perform certain tasks.

Software refers to a collection of -1dnstructions,
data, or programs that enable a computer to perform
specific tasks. It is the non-physical component of
a computer system, as opposed to hardware, which
comprises the physical parts.

Types Of
Software

System Application
Software Software

Language Customised
Operating System Processor And General purpose Software
E.g:- linux, Device Driver E.g:- MS-word, E.g:- Railways
windows etc. E.g:- Interpreter, Photoshop etc. resevation
compiler etc. system etc.

[YPES OF SOFTWARE

There are three major types of software:

e System Software: Includes operating systems, device
drivers, and utilities that manage hardware and provide
a platform for running application software.

e Application Software: Programs that perform specific
tasks for the user, such as word processors,
spreadsheets, and media players.

e Embedded Software: Software built into devices like
phones, cars, and appliances to control their
functions.

Examples of Embedded Software:

Device

Washing Machine

Microwave QOven

Digital Camera

Smart TV

ATM Machine

Embedded Software ka Role

Wash cycle control karta hai (e.g. time, spin speed)

Heat time set karna, power level control karna

Image capture, zoom control, storage handling

Interface, app control, remote ke inputs handle karna

Card read karna, transactions process karna

EXAMPLES OF SOFTWARE

Operating Systems: These are system software that
manage the computer’s hardware and software resources.

Windows, macOS, Linux, Android, 1iO0S.
Web Browsers: These are application software that allow
users to browse the 1internet.

Google Chrome, Mozilla Firefox, Safari
Word Processors: These are applications for creating,
editing, and formatting text documents.

Microsoft Word, Google Docs
Media Players: Software used to play audio and video
files.

VLC Media Player, Windows Media Player,
iTunes.

EXAMPLES OF SOFTWARE

Photo Editors: Software used to edit and enhance
images.

Adobe Photoshop, GIMP, Canva, Capcut
Messaging Apps: Applications for sending messages
or making calls.

WhatsApp, Facebook Messenger, Slack.
Games: Entertainment software that allows users to
play digital games.

Crazy taxi, Pubg, Call of Duty.
Development Tools: Software used by programmers to
write and test code.

Visual Studio, Eclipse, Xcode, android
studio.

WHAT ARE THE ATTRIBUTES OF GOOD SOFTWARE!

The attributes of good software describe what makes software reliable, effective,
and user-friendly.

1. Maintainability

e The software should be easy to update and modify when necessary, whether 1it’s
for fixing bugs, adding new features, or adapting to new environments.

2. Reliability

e Good software performs consistently under normal conditions without crashing
or producing incorrect results. It should work correctly and as expected.

3. Efficiency

e The software should use system resources (like memory and processing power)
wisely, ensuring that it runs quickly and doesn't slow down the device.

4, Usability

e The software should be easy for users to understand and operate. A
well-designed user 1interface (UI) and good user experience (UX) make it more
accessible and enjoyable to use.

WHAT ARE THE ATTRIBUTES OF GOOD SOFTWARE?

Portability

Good software <can run on different platforms or
environments (like Windows, mac0S, or Linux) without
needing major changes.

Security

The software should protect user data and resources from
unauthorized access, hackers, and other security threats.
It should ensure privacy and data integrity.

Functionality

The software must meet the needs of -+its users by
providing the correct features and capabilities. It
should perform the tasks it was designed for without
errors or missing functionality.

WHAT ARE THE ATTRIBUTES OF GOOD SOFTWARE?

. Scalability

The software should be able to handle an
increasing number of users, data, or tasks
without a drop in performance. This 1is 1important
for software that is expected to grow over time.

. Testability

It should be easy to test the software to find
and fix any bugs or problems. Testing should be
simple and thorough to ensure high quality.

WHAT ARE THE ATTRIBUTES OF GOOD SOFTWARE?

Good software has these features:

Easy to Update: Changes can be made without much
trouble (maintainable).

Reliable: It works without crashing or failing.

Fast and Efficient: Uses resources wisely so it doesn’t
slow down your computer.

Easy to Use: It’s user-friendly and simple to
understand.

Secure: Keeps your data safe from hackers.

WHAT 5 SOFTWARE ENGINEERING!

Software engineering 1is an engineering discipline that s
concerned with all aspects of software production.

Software engineering 1is the process of designing,
developing, testing, and maintaining software 1in a
systematic, efficient, and reliable way.

It 1involves applying engineering principles to ensure that
the software 1is high—-quality, meets user needs, and can be
easily maintained and updated.

1.1.1 Software engineering

Software engineering is an engineering discipline that is concerned with all aspects of
software production from the early stages of system specification through to maintain-
ing the system after it has gone into use. In this definition, there are two key phrases:

1. Engineering discipline Engineers make things work. They apply theories, meth-
ods, and tools where these are appropriate. However, they use them selectively

and always try to discover solutions to problems even when there are no appli-
cable theories and methods. Engineers also recognize that they must work to
organizational and financial constraints so they look for solutions within these
constraints.

2. All aspects of software production Software engineering is not just concerned
with the technical processes of software development. It also includes activities
such as software project management and the development of tools, methods,
and theories to support software production.

SOFTWARE ENGINEERING IS TMPORTANT FOR TWO REASONS:

1. More and more, 1individuals and society rely on
advanced software systems. We need to be able to produce
reliable and trustworthy systems economically and
quickly.

2. It 1is usually cheaper, 1in the 7long run, to use
software engineering methods and techniques for software
systems rather than just write the programs as if it was
a personal programming project. For most types of
systems, the majority of costs are the costs of changing
the software after it has gone 1into use.

DIFFERENCE BETWEEN COMPUTER SCIENCE, SYSTEM AND SOFTWARE
ENGINEERING

Computer Science (CS): Focuses on the theoretical foundations of information and
computation. It includes studying algorithms, data structures, artificial
intelligence, and more. Computer science covers a broad range of topics, from
computing theory to hardware systems, but it is less concerned with the
practicalities of building software products for specific users.

System Engineering (SE): Focuses on the overall design, integration, and management
of complex systems over their life cycles. System engineering involves hardware,
software, people, processes, and infrastructure to deliver functioning systems. It
is a multidisciplinary field that spans engineering, project management, and
software engineering.

Software Engineering: A subfield of system engineering that focuses solely on
software products. It deals with the entire software development life cycle,
including requirements analysis, design, implementation, testing, deployment, and
maintenance.

L]l Comparison Table:

Feature

@ Focus

™ Main Work

& Core Areas

Tools Used

Output

Computer Science

Theory, algorithms,
logic

Problem-solving,
research

Al, data science,
networks

Pregramming
languages,
compilers

Concepts,
prototypes

Software
Engineering

Software design &
development

Building
applications

SDLC, testing,
ceding

IDEs, UML, testing

tools

Software products

System Engineering

Complete system (hardware +

software)

Managing large systems

Integration, system design

Modeling tools, simulation

Entire systems {e.g., aircraft,
hospitals)

WHAT ARE THE FUNDAMENTAL SOFTWARE ENGINEERING ACTIVITIES]

The fundamental software engineering activities
include
1. Software specification (Software ki zaruratein

likhna aur samajhna)

Software development (Actual software banana -
coding wala part)

Software validation (Check karna ke software
sahi kaam kar raha hai ya nahi)

Software evolution(Software ka waqt ke saath
update hona)

The systematic approach that is used in software engineering is sometimes called
a software process. A software process 1s a sequence of activities that leads to the
production of a software product. There are four fundamental activities that are com-
mon to all software processes. These activities are:

1. Software specification, where customers and engineers define the software that
is to be produced and the constraints on its operation.

2. Software development, where the software is designed and programmed.

3. Software validation, where the software 1s checked to ensure that it 1s what the
customer requires.

4. Software evolution, where the software 1s modified to reflect changing customer
and market requirements.

WHAT ARE THE KEY COMPONENTS OF SOFTWARE ENGINEERING]

Software engineering 1includes multiple components which help 1in the
overall software development process. Let’s understand each of the
components 1in detail.

Requirements analysis: You identify and understand the requirements
of the end-users, technical, and functional constraints.

Software design: Creating a detailed plan that defines the
software’s architecture, components, interfaces, and data
structures.

Implementation: Writing the code and converting the design 1into a
working software application.

Software testing: Ensuring that the software functions as 1intended,
and identifying and fixing any bugs or -issues.

Deployment: Distributing the software to end-users and making sure
it works properly in the intended environment.

Maintenance: Updating, improving, and fixing the software over time
to meet changing requirements or address -Hissues.

HOW DOES SOFTWARE ENGINEERING DIFFER FROM PROGRAMMING!

Software engineering and programming, both 1involve
writing code. Computer programming focuses on the act
of writing code to create software, whereas software
engineering 1involves the entire software development
lifecycle, from requirements analysis to maintenance.

In other words, software engineering 1is a more
comprehensive approach to building software solutions.
On the contrary, computer programming refers to only
writing code for a software solution.

r) CORE [HALL[NG[S FACED IN SOFTWARE ENGINEERING

Complex Evolving Requirements
As a software eng1neer, you’ll face complex and ever-changing
requirements. It’s crucial to effectively gather, analyze, and
prioritize features while accommodating changes during development.
Failing to address these complexities can lead to delays, 1increased
costs, and unmet user requirements.

Scalability and Performance
You need to build software solutions that scale effectively and
maintain high performance as the user base or data volume grows.
Consider factors such as load balancing, data partitioning, and caching
strategies. Ignoring scalability and performance -issues can result 1in
slow, unresponsive software that frustrates users and hinders growth.

Integration With Existing Systems and Technologies
Your software often needs to 1interact with other systems, APIs, and
technologies.The 1inability to integrate effectively with other systems
may limit your software’s usefulness and -+impact.

https://www.spaceo.ca/blog/how-to-develop-software/

) CORE CHALLENGES FACED IN SOFTWARE ENGINEERING

3. Security and Privacy
As a software engineer, 1it’s essential to ensure your software is
secure and protects user data. Employ safe coding practices,
encryption, and authentication mechanisms, and stay updated on
relevant regulations. Failure to address security and privacy
challenges can lead to data breaches, loss of user trust, and
legal consequences.

4. Effective Team Collaboration
Software projects 1involve diverse development teams, so
facilitating effective communication and collaboration is
crucial. Adopt agile methodologies, use collaboration tools, and
foster a culture of open communication and shared ownership.
Overcoming team collaboration challenges helps 1dncrease the
likelihood of delivering successful, high-quality software
products on time and within budget.

WHO WANTS T0 BE A SOFTWARE ENGINEER]

Software engineers are concerned with developing software
products (i.e., software which can be sold to a customer).

UNFINISHED LIORK

MONKEWSER COM

SOFTWARE PRODUCTS

There are two kinds of software products:

1. Generic products These are stand-alone
systems that are produced by a development
organization and sold on the open market to any
customer who 1is able to buy them. Generic
products are versatile and widely applicable

software solutions available for purchase by
any customer.

Examples:

Microsoft Office Suite: Includes applications 1like Word,
Excel, and PowerPoint that can be used by anyone for
various tasks.

Adobe Photoshop: A widely used software for photo editing
and graphic design, available to a broad audience.

Web Browsers: Google Chrome, Mozilla Firefox, and
Safari, which are available for anyone to use for
browsing the -[internet.

Video Conferencing Tools: Zoom, Microsoft Teams, and
Skype, which offer video communication services for
individuals and organizations.

Project Management Tools: Software like Trello, Asana, or
Microsoft Project that can be used by any team for task
and project management.

SOFTWARE PRODUCTS

2. Customized (or bespoke) products These are
systems that are commissioned by a particular
customer. A software contractor develops the
software especially for that customer.
customized products are specifically designed
and developed for the unique needs of
individual clients or organizations. Each type
serves different purposes and caters to
different market segments.

Examples:

Mobile Applications: A restaurant might hire developers to create a
mobile app for ordering food and making reservations tailored to
their specific menu and service

Healthcare Information Systems: Custom systems developed for specific
hospitals or clinics to manage patient data, appointments, billing,
and compliance with health regulations.

Air Traffic Control Systems: These systems are developed to meet the
specific regulatory and operational requirements of a particular
country's aviation authority.

Healthcare Management Systems: Custom software created for a hospital
or clinic to manage patient records, appointments, billing, and other
functions tailored to their specific needs.

School Management System for an Educational Institution: A private
school commissions a software system to manage student enrollment,
attendance, grade books, parent-teacher communication, and
extracurricular activities specific to the institution's policies.

WHAT 1§ CASE]

Computer-aided software engineering (CASE) is the
implementation of computer-facilitated tools and methods 1in
software development. CASE 1is used to ensure high-quality
and defect-free software. CASE ensures a check-pointed and
disciplined approach and helps designers, developers,
testers, managers, and others to see the project milestones
during development.

Computer-Aided Software Engineering (CASE) refers to the
use of software tools to assist 1in the software
development process. These tools help automate various
stages of software development, -including planning,
designing, coding, testing, and maintenance.

CASE tools woh software hote hain jo
software banana aasan banate hain. Jaise
Microsoft Word document 1likhne mein
madad karta hai, waise hi CASE tools
software banane mein madad karte hain.

KEY COMPONENTS OF CASE

Tools and Software:

CASE encompasses a wide range of tools, 1including:

Modeling Tools: Used for creating diagrams and models (e.g., UML
diagrams, flowcharts) to represent system architecture and design.
Code Generators: Automatically generate <code from models or
specifications, reducing manual coding effort.(Aapne UML class
diagram banayi — us diagram ko ek tool (jaise StarUML) mein daala -
tool ne Java ya C++ ka code automatically generate kar diya.)

Testing Tools: Assist in automating testing processes, including unit
testing, integration testing, and system testing.

Documentation Tools: Help generate and manage project documentation,
such as requirements specifications, design documents, and user
manuals.

Project Management Tools: Aid 1in planning, scheduling, and tracking
project progress, resources, and risks.

Methodologies:

CASE often 1incorporates various methodologies and
frameworks to guide the software development process,
such as:

e Agile: Focusing on iterative development and
collaboration.
e Waterfall: Following a linear, sequential approach.

CASETOO0LS

CASE tools are classified into two main categories:

Upper CASE tools: Focus on the early stages of
software development, such as requirements analysis,
system design, and architectural modeling.

Lower CASE tools: Focus on later stages, such as
code generation, testing, debugging, and
maintenance.

. Upper case
tool

Lower case

Integrated
Case Tool

BENEFITS OF USING CASE T0OLS

Improved Productivity: Automation of tasks like design, coding, and testing speeds
up the development process.

Consistency: Helps ensure that all parts of the software follow the same desqign
principles and coding standards.

Error Reduction: Early detection of errors and -[inconsistencies, reducing bugs and
rework during later stages.

Better Documentation: Automatically generates documentation for models, designs,
and code.

Efficient Collaboration: Facilitates collaboration between teams by centralizing
design and development efforts.

Quality Improvement: Enhances software quality by providing tools for testing and
validation.

SOFTWARE ENGINEERING ETHICS

IE®-) Software engineering ethics

Like other engineering disciplines, software engineering is carried out within a
social and legal framework that limits the freedom of people working in that area. As
a software engineer, you must accept that your job involves wider responsibilities
than simply the application of technical skills. You must also behave in an ethical
and morally responsible way if you are to be respected as a professional engineer.

[t goes without saying that you should uphold normal standards of honesty and
integrity. You should not use your skills and abilities to behave in a dishonest way or
in a way that will bring disrepute to the software engineering profession. However,
there are areas where standards of acceptable behavior are not bound by laws but by
the more tenuous notion of professional responsibility. Some of these are:

SOFTWARE ENGINEERING ETHI(S

Confidentiality You should normally respect the confidentiality of your employ-
ers or clients irrespective of whether or not a formal confidentiality agreement
has been signed.

Competence You should not misrepresent your level of competence. You should
not knowingly accept work that is outside your competence.

Intellectual property rights You should be aware of local laws governing the use
of intellectual property such as patents and copyright. You should be careful to
ensure that the intellectual property of employers and clients is protected.

Computer misuse You should not use your technical skills to misuse other
people’s computers. Computer misuse ranges from relatively trivial (game playing
on an employer’s machine, say) to extremely serious (dissemination of viruses or
other malware).

Software Engineering Code of Ethics and Professional Practice
ACM/IEEE-CS Joint Task Force on Software Engineering Ethics and Professional Practices

PREAMBLE

The short version of the code summarizes aspirations at a high level of the abstraction; the clauses that are
included in the full version give examples and details of how these aspirations change the way we act as
software engineering professionals. Without the aspirations, the details can become legalistic and tedious;
without the details, the aspirations can become high sounding but empty; together, the aspirations and the
details form a cohesive code.

Software engineers shall commit themselves to making the analysis, specification, design, development,
testing and maintenance of software a beneficial and respected profession. In accordance with their
commitment to the health, safety and welfare of the public, software engineers shall adhere to the following
Eight Principles:

1. PUBLIC — Software engineers shall act consistently with the public interest.

2. CLIENT AND EMPLOYER — Software engineers shall act in a manner that is in the
best interests of their client and employer consistent with the public interest.

3. PRODUCT — Software engineers shall ensure that their products and related
modifications meet the highest professional standards possible.

4. JUDGMENT — Software engineers shall maintain integrity and independence in their
professional judgment.

5. MANAGEMENT — Software engineering managers and leaders shall subscribe to and

promote an ethical approach to the management of software development and Flgure 13 The
maintenance.
6. PROFESSION — Software engineers shall advance the integrity and reputation of ACM/IEFE Code of
the profession consistent with the public interest. Ethics (@ |EEE/ACM
7. COLLEAGUES — Software engineers shall be fair to and supportive of their]999)
colleagues.

8. SELF — Software engineers shall participate in 1ifelong learning regarding the
practice of their profession and shall promote an ethical approach to the
practice of the profession.

EXAMPLES OF ETHICAL ISSUES IN SOFTWARE ENGINEERING:

Data Breaches: Failing to -implement adequate security measures,
leading to unauthorized access to sensitive user data.

Algorithmic Bias: Developing algorithms that perpetuate
discrimination or bias against certain groups based on race, gender,
or socioeconomic status.

Intellectual Property Theft: Using proprietary code or technology
without permission, violating copyright laws and ethical standards.

Misleading Software Claims: Making exaggerated or false claims about
the capabilities or performance of software products.

SOFTWARE ENGINEERING ETHICS

Here are some key aspects of software engineering ethics:
Professional Conduct

° Software engineers should act with honesty and -[integrity 1in
their professional work. This 1dncludes accurately representing their
qualifications, capabilities, and the potential of the software they

develop.

° Engineers should only undertake work that they are competent
to perform and should seek to 1improve their skills and knowledge
continuously.

Respect for Privacy

° Software engineers must respect user privacy and ensure
that personal data 1is collected, stored, and processed securely. They
should comply with relevant data protection regulations.

° Users should be informed about how their data will be used
and should give explicit consent before data collection.

SOFTWARE ENGINEERING ETHICS

Transparency and Accountability

° Software engineers should disclose any potential conflicts of
interest, as well as limitations or risks associated with the software they
develop.

° Engineers should take responsibility for their work and the

consequences of software failures or misuse.
Quality Assurance

° Software engineers should strive to produce
high-quality software that -is reliable, secure, and free from defects. This
includes proper testing and validation.

° Engineers should avoid using deceptive practices 1in software
testing and ensure that the software behaves as expected.

Impact on Society
° Software engineers should consider the societal 1impact

of their work, 1including potential harm or benefits to 1individuals,
communities, and the environment.

SOFTWARE ENGINEERING ETHICS

Compliance with Laws and Regulations

° Software engineers must adhere to relevant laws and
regulations governing software development, 1intellectual property, and
cybersecurity.

° Engineers should avoid creating or supporting software
that promotes 1illegal or unethical activities, such as hacking, piracy, or
discrimination.

Professional Development and Mentorship

° Engineers should commit to Tlifelong 1learning and
professional development, staying updated on best practices, technologies, and
ethical considerations in software engineering.

° Experienced engineers should mentor and guide junior professionals,
promoting ethical behavior and professional growth in the field.

Collaboration and Respect

° Engineers should work collaboratively with colleagues, respecting
diverse perspect1ves and contributions. They should communicate effectively and
foster a positive team environment.

° When conflicts arise, engineers should approach them
professionally and ethically, seeking resolution through dialogue and
compromise.

The “Drone Revolution” 1is currently being debated
and discussed all over the world. Drones are
unmanned flying machines that are built and
equipped with various kinds of software systems
that allow them to see, hear, and act. Discuss
some of the societal challenges of building such
kinds of systems.

COMMON MYTHS OF SOFTWARE ENGINEERING

Myth: Software Development 1is Just Coding

° Software engineering encompasses much more than just writing

code. It includes requirements gathering, design, testing, and
maintenance.

Myth: Adding More Developers Speeds Up Development

° Adding more developers to a late project can slow it down due to
increased coordination and communication overhead (Brooks' Law).

Myth: Requirements Are Always Clear and Fixed

° Requirements often evolve over time as stakeholders gain a better

understanding of their needs. Agile methodologies address this by allowing
for flexibility.

Myth: Testing is an Afterthought

° Testing should be -1integrated throughout the development process
(test-driven development), not just at the end, to catch defects early.

COMMON MYTHS OF SOFTWARE ENGINEERING

Myth: Good Software Can Be Built Quickly

° Quality software requires time for planning, design, development,
testing, and refinement. Shortcuts can lead to technical debt and poor
quality.

Myth: More Features Mean Better Software

° Adding unnecessary features can complicate software and detract
from its core functionality. Focus on delivering essential features first.

Myth: Documentation is Unnecessary
° Proper documentation is crucial for maintaining software,
onboarding new team members, and ensuring that knowledge +is preserved over
time.
Myth: Software Development is a Linear Process

° Software development is often iterative and can involve
revisiting earlier phases (requirements, design, testing) based on
feedback and changes.

~N o0 un b WDN KR
e o o o o o o

COMMON PRACTICES IN SOFTWARE ENGINEERING

Requirement Analysis

Software Design

Methodologies

Testing and Quality Assurance
Version Control

Documentation

Code Reviews

24 Chapter 1 = Introduction

KEY POINTS

Software engineering is an engineering discipline that is concerned with all aspects of software
production.

Software is not just a program or programs but also includes documentation. Essential software
product attributes are maintainability, dependability, security, efficiency, and acceptability.

The software process includes all of the activities involved in software development. The high-
level activities of specification, development, validation, and evolution are part of all software
processes.

The fundamental notions of software engineering are universally applicable to all types of
system development. These fundamentals include software processes, dependability, security,
requirements, and reuse.

There are many different types of systems and each requires appropriate software engineering
tools and techniques for their development. There are few, if any, specific design and
implementation techniques that are applicable to all kinds of systems.

The fundamental ideas of software engineering are applicable to all types of software systems.
These fundamentals include managed software processes, software dependability and security,
requirements engineering, and software reuse.

Software engineers have responsibilities to the engineering profession and society. They should
not simply be concerned with technical issues.

Professional societies publish codes of conduct that set out the standards of behavior expected
of their members.

Discuss whether professional engineers should be certified
in the same way as doctors or lawyers.

No, software engineers do not necessarily need to be
certified in the same way as doctors or lawyers. However,
certification may be beneficial in specific, safety-critical
fields.

What is software? Computer programs and associated documentation. Software
products may be developed for a particular customer or may be
developed for a general market.

What are the attributes of good Good software should deliver the required functionality and

software? performance to the user and should be maintainable, dependable
and usable.

What is software engineering? Software engineering is an engineering discipline that is concerned
with all aspects of software production from initial conception to
operation and maintenance.

What are the fundamental Software specification, software development, software validation

software engineering activities? and software evolution.

What is the difference between Computer science focuses on theory and fundamentals; software

software engineering and engineering is concerned with the practicalities of developing and

computer science? delivering useful software.

What is the difference between System engineering is concerned with all aspects of computer-

software engineering and system based systems development including hardware, software and

engineering? process engineering. Software engineering is part of this more
general process.

What are the key challenges Coping with increasing diversity, demands for reduced delivery

facing software engineering? times and developing trustworthy software.

What are the costs of software Roughly 609 of software costs are development costs, 40% are

engineering? testing costs. For custom software, evolution costs often exceed
development costs.

What are the best software While all software projects have to be professionally managed and

engineering techniques and developed, different techniques are appropriate for different types

methods? of system. For example, games should always be developed using

a series of prototypes whereas safety critical control systems
require a complete and analyzable spedification to be developed.
There are no methods and techniques that are good for everything.

What differences has the Internet Not only has the Internet led to the development of massive, highly

made to software engineering? distributed, service-based systems, it has also supported the
creation of an “app” industry for mobile devices which has
changed the economics of software.

